Low-Temperature Infrared Studies of the Styrene–Ozone Reaction. Formation of an Unusual Ozonide

I. C. Hisatsune, Kiyonori Shinoda,[†] and Julian Heicklen*

Contribution from the Department of Chemistry and Center for Air Environment Studies. The Pennsylvania State University, University Park, Pennsylvania 16802. Received October 3, 1978

Experimental Section

Abstract: Styrene was reacted with O₃ at low temperatures and infrared spectra of the system were recorded. On warming the system from -196 °C, only a single product was formed at about -110 °C. This ozonide was relatively stable and did not decay until about -55 °C; it even appeared to persist at room temperature. The decomposition of the ozonide produced C₆H₅CHO as the sole detectable aldehyde product. In the presence of CH₃OH, it decayed rapidly even at -100 °C. The behavior of this ozonide is different from that of styrene secondary ozonide reported by earlier workers. The data suggest that it is the primary ozonide.

Introduction

We have examined the low-temperature reaction of ozone with styrene to see if the first product is the primary ozonide or the π complex, or both. Previous work in our laboratory¹ showed that C₂H₄ reacted with O₃ to produce the primary ozonide, but not the π complex, whereas toluene reacted with O₃ to produce the π complex, but not the primary ozonide. Furthermore, this earlier work showed that generally alkylsubstituted ethylenes gave both products.

Bailey and his co-workers²⁻⁴ had examined the low-temperature ozonation of mesitylene, 1-mesityl-1-phenylethane, 1-mesityl-1-phenylethylene, and 1-methoxy-1,2,2-trimesitylethylene and found that only the π complexes were formed, which decomposed when warmed to give epoxides. Hence, one might expect that styrene may also give a π complex. However, this may not follow necessarily since work in our laboratory⁵ on chlorinated ethylenes showed that the multisubstituted compounds gave only π complexes, but that the monosubstituted compound, C₂H₃Cl, gave a primary ozonide as well.

The reaction of O_3 with styrene has been studied previously. Briner and his collaborators^{6,7} reacted O_3 with styrene in CCl₄ solution and measured the infrared and Raman spectra of the reacted mixture (presumably at room temperature, though this is not stated). The reaction mixture showed new infrared bands at 1708, 1213, 1065–1055, and 936 cm⁻¹ which were assigned to an ozonide (presumably the secondary ozonide).

Keaveney et al.⁸ reacted styrene with O₃ at -65 to -75 °C in the presence of CH_3OH and measured the reaction products, which consisted of C₆H₅CHO, CH₂O, and two peroxides. All four compounds were produced in about equal amounts, and it was concluded that O₃ could cleave the double bond to produce either aldehyde and zwitterion with equal likelihood. This result is surprising since their study of the O₃ reaction with propenylbenzene and 2-methylpropenylbenzene gave almost entirely the aromatic aldehyde and the appropriate hydroperoxide. These styrene- O_3 results may be questionable since O_3 is known to react with CH₃OH to produce CH₂O,⁹ at least under some conditions. Furthermore, Fliszar¹⁰ found that the styrene reaction with O₃ in CCl₄ solution at 25 °C gave initially much more C_6H_5CHO than CH_2O , and that only as the reaction progressed did the CH₂O yield equal the C₆H₅CHO yield. He also studied the reaction at 15-35 °C in CCl₄ solution containing CH₃OH and found only C₆H₅CHO and hydroperoxide as products. Thus, Fliszar concluded that only the cleavage to give $C_6H_5CHO + CH_2O_2$ was important. Therefore, another reason for us to reexamine the low-temperature styrene– O_3 reaction was to see which products are formed.

© 1979 American Chemical Society

Styrene was reacted with ozone directly on the liquid nitrogen cooled infrared window of a low-temperature cell. The infrared spectra of the samples were recorded as the cell was warmed to a given temperature and then recooled to -196 °C. The experimental details are given in earlier papers.^{1,5} Reagent grade styrene was used after being degassed under vacuum and distilled.

Results

When O_3 was mixed with styrene at -196 °C, sometimes a greenish yellow color was initially seen, but it disappeared immediately on warming. This coloration was not always seen and no unaccounted infrared bands were present. Possibly this color belongs to a very unstable π complex which is reversibly formed at temperatures slightly above -196 °C. With further warming no additional infrared bands were seen until a temperature of -100 ± 10 °C was reached. Then the styrene bands diminished and a single new product was formed whose spectrum resembled those of ozonides observed in our laboratory.^{1,5} According to its spectrum, this ozonide appeared to be stable until the temperature was raised to about -55 °C, when it started to decay and new bands belonging to C₆H₅CHO and probably a peroxidic polymer began to appear. No C₆H₅CHO was ever detected during the formation of the initial ozonide. The decomposition of the ozonide was relatively slow, and the stronger of its infrared bands were often still detectable even when the cell approached room temperature or when the sample was pumped off the window and then recondensed again.

The low-temperature ozonolysis of styrene in the presence of CH₃OH was also examined. No reaction was evident until the temperature reached near -110 °C, when the styrene bands began to disappear. However, no ozonide was formed. Instead, as the styrene decayed, infrared bands due to C₆H₅CHO, CO₂, and HC(O)OCH₃ grew. Thus, either CH₃OH reacted very rapidly with the ozonide or it destroyed a precursor of the ozonide. To distinguish these possibilities, CH₃OH was added to a sample in which the ozonide had already formed and the ozone had been depleted. [The latter condition was necessary since CH₃OH was found to react with O₃ at 25 °C to give CO₂ and HC(O)OCH₃.] On warming this sample, the ozonide decayed rapidly even at about -100 °C and C₆H₅CHO, CO₂, and HC(O)OCH₃ were again produced.

Finally, the room temperature ozonolysis of styrene was examined in a gas cell. The vapor-phase spectrum showed, in addition to bands of styrene, characteristic peaks due to C_6H_5CHO , CO_2 , and HCOOH. Some noncondensable gas, presumably oxygen, was also present in the cell.

[†] Toyama Technical College, Hongo, Toyama-shi, 930-11, Japan.

Figure 1. Infrared spectra of styrene and reaction products of the styrene- O_3 reaction: top, pure styrene at -180 °C; center, a styrene- O_3 mixture warmed to -55 °C in which some ozonide bands have appeared; bottom, two samples of pure ozonide made by warming styrene- O_3 mixtures to -40 °C, pumping away the unreacted styrene and O_3 , and recooling to -180 °C.

Table I. Infrared	Bands of a St	yrene Ozonide at	-180 °C
-------------------	---------------	------------------	---------

obsd	
frequencies,	possible
cm ⁻¹	assignments
3055 vw	aromatic CH stretch
3025 vw	aromatic CH stretch
2958 vw	ozonide CH stretch
2888 m	ozonide CH stretch
1960 vw	combination
1900 vw	combination
1820 vw	combination
1695 vw	combination
1600 vw	aromatic ring stretch
1490 w	aromatic ring stretch
1458 m	aromatic ring stretch
1380 m	CH_2 deformation
1310 m	CH bend
1290 w	aromatic CH bend
1212 m	CH ₂ rock
1173 vw	aromatic CH bend
1156 vw	aromatic CH bend
1128 w	ozonide ring stretch
1085 m	aromatic CH bend
1060 vs	ozonide ring stretch
1022 s	ozonide ring stretch
975 s	ozonide ring stretch
930 m	ozonide ring stretch
846 w	aromatic ring bend
808 w	ozonide ring bend
752 s	aromatic CH bend
732 w	combination
690 s	aromatic ring bend
630 w	aromatic ring bend
610 vw	aromatic ring bend
520 vw	aromatic CH bend
360 vw	ozonide ring bend

Infrared spectra of styrene, the styrene– O_3 reaction mixture, and the initially formed ozonide are shown in Figure 1. The absorption bands of solid styrene (upper spectrum) are all very sharp, but those of the ozonide are relatively broad. In the middle spectrum, showing a partially reacted system, the broad peak at 1060 cm⁻¹ is due to the strongest ozonide peak. The lower two spectra of the ozonide itself were obtained by pumping on the samples as they were warmed to -40 °C, by which temperature the unreacted styrene is effectively removed. However, some decomposition of the ozonide is unavoidable in this process, and the weak peak at 1700 cm⁻¹ in the spectrum of the thicker sample (dotted curve, lower spectrum) is due to the strongest band of C₆H₅CHO.

The peak frequencies of our solid ozonide recorded at -180 °C are listed in Table I. The bands at 1212, 1060, and 930 cm⁻¹ present here must correspond to the three of the four ozonide peaks observed by Briner and co-workers,^{6,7} but the 1708-cm⁻¹ peak reported by these investigators is undoubtedly due to the carbonyl band of C₆H₅CHO. Thus, our initial reaction product is an ozonide, but its assignment to either a primary ozonide (1,2,3-trioxolane) or a secondary ozonide (1,2,4-trioxolane) requires further analysis of the available data.

Since the spectrum of our initial reaction product resembles those of other primary ozonides,¹ particularly the spectrum of a vinyl chloride primary ozonide,⁵ our product may be a styrene primary ozonide. Then, its failure to change into a secondary ozonide is not unexpected since the reactivity of C_6H_5CHO with its complementary zwitterion may be low under our experimental conditions. Earlier, we noted that primary ozonides of tetramethylethylene¹ and vinyl chloride⁵ also failed to yield their secondary ozonides, evidently owing to low reactivities of acetone and formyl chloride with their respective associated zwitterions. However, if our initial product is a primary ozonide, then it has a remarkable thermal stability. The most stable primary ozonides observed in our earlier studies were those of tetramethylethylene¹ and vinyl chloride,⁵ whose decomposition rates became appreciable at about -90 and -70 °C, respectively. Although these temperatures are not very different from the decomposition temperature of -55 °C for our styrene ozonide, neither of the previous primary ozonides survived warming to room temperature. It may be that the weak spectrum we observed in our residual samples at room temperature is due to a secondary ozonide whose intense bands are indistinguishable from those of the primary ozonide, but that does not seem very likely.

If, on the other hand, our ozonide is a styrene secondary ozonide, this assignment raises some experimental difficulties. First, styrene ozonide becomes the only secondary ozonide for which we have failed to detect by low-temperature infrared spectroscopy the associated primary ozonide. Second, C_6H_5CHO should be a precursor to the secondary ozonide, and it should have been readily observed under our experimental conditions. Finally, the thermal stability of our ozonide is very different from that of a styrene secondary ozonide prepared by Criegee and Korber.¹¹ These authors found their ozonide to be stable up to 50 °C in a neat state or in solutions of benzene, CCl₄, or CHCl₃. In several other solvents, their ozonide was unstable and decomposed by a first-order kinetics giving C₆H₅CHO as the exclusive aldehyde. The decomposition half-life was the shortest in CH₃OH solvent, being about 22

min at 50 °C. In isopropyl alcohol the half-life was 113 h at the same temperature. Compared to these results, our ozonide decomposition became appreciable at -100 °C in the presence of CH₃OH and at about -55 °C by itself. On the basis of these data, we prefer to suggest that our ozonide may be a styrene primary ozonide. A tentative assignment of the infrared spectrum, where the oxolane ring modes have been distinguished from those characteristic of the styrene,¹² is presented in Table I.

References and Notes

- (1) L. A. Hull, I. C. Hisatsune, and J. Heicklen, J. Am. Chem. Soc., 94, 4856
- (1972).
 (2) P. S. Bailey, J. W. Ward, and R. E. Hornish, J. Am. Chem. Soc., 93, 3552 (1971).
- (3) P. S. Bailey, J. W. Ward, R. E. Hornish, and F. E. Potts, III, "Ozone Reactions
- (d) P. S. Bailey, J. W. Ward, T. P. Carter, Jr., E. Nieh, C. M. Fischer, and A.-I. Y. Khashab, J. Am. Chem. Soc., 96, 6136 (1974).
- (5) I. C. Hisatsune, L. H. Kolopajlo, and J. Heicklen, J. Am. Chem. Soc., 99, 3704 (1977).
- (6) B. Susz, E. Dallwigk, and E. Briner. Helv. Chim. Acta, 35, 345 (1952). (7) E. Briner, C. Christol, H. Christol, S. Flisżar, and G. Rossetti, *Helv. Chim.* Acta, **46**, 2249 (1963).
- (8) W. P. Keaveney, M. G. Berger, and J. J. Pappas, J. Org. Chem., 32, 1537 (1967).
- (1907).
 (9) M. C. Whiting, A. J. N. Bolt, and J. H. Parish, "Oxidation of Organic Compounds", Vol. III, Adv. Chem. Ser., No. 77, 4 (1968).
 (10) S. Flisżar, Can. J. Chem., 44, 2351 (1966).
 (11) R. Criegee and H. Korber, "Ozone Reactions with Organic Compounds", Adv. Chem. Ser., No. 112, 22 (1972).
 (10) M. O. Estalawa, O. L. Cartaga, and E. E. Dickana, Anal. Spectrage, 22, 550.

- (12) W. G. Fateley, G. L. Carlson, and F. E. Dickson, Appl. Spectrosc., 22, 650 (1968).

Lipophilic [2.2.2] Cryptands as Phase-Transfer Catalysts. Activation and Nucleophilicity of Anions in Aqueous-Organic Two-Phase Systems and in Organic Solvents of Low Polarity

Dario Landini,*1ª Angelamaria Maia,1ª Fernando Montanari,*1ª and Pietro Tundo1b

Contribution from the Centro C.N.R. and Istituto di Chimica Industriale dell'Universita', 20133 Milano, Italy, and the Istituto di Chimica Organica dell'Universita', 10125 Torino, Italy. Received October 13, 1978

Abstract: Kinetics of nucleophilic substitutions by a homogeneous series of anions in n-octyl methanesulfonate, catalyzed by lipophilic cryptand [2.2.2, C14] 1, have been measured in a chlorobenzene-water two-phase system. Cryptand 1 behaves as a phase-transfer catalyst, and reactions follow a mechanism identical with that found for quaternary salts Q⁺Y⁻. The observed pseudo-first-order rate constants are linearly related to the concentration of cryptate $[K^+ \subset (2.2, C_{14})]Y^-$ in the organic phase. They can be simulated in a homogeneous PhCl solution by adding the amount of water associated with the cryptate and with the substrate in the PhCl-H₂O two-phase system, the reactivity scale being $N_3^- > CN^- > Br^- \sim I^- > Cl^- > SCN^-$. The hydration state of anions in $[K^+ \subset (2.2, C_{14})]Y^-$ is the same as that found for Q^+Y^- . In anhydrous PhCl reaction rates increase up to 15-fold and the reactivity scale (CN⁻ > N₃⁻ > Cl⁻ > Br⁻ > I⁻ > SCN⁻) becomes identical with the well-known sequence in dipolar aprotic solvents. Lipophilic cryptates exist as monomeric species in low-polarity solvents. In these conditions they probably represent the best approach to a model of solvent-separated ion pair. Owing to the low polar interaction and the absence of association, the reactivity shown by the unsolvated anion is probably the maximum obtainable in solution.

The mechanism of liquid to liquid phase-transfer catalysis (PTC) by lipophilic onium salts is well established.²⁻⁶ In addition to onium salts, several systems capable of forming inclusion complexes with metal cations have been used as phase-transfer catalysts: crown ethers,7 cryptands,8 and polypode ligands.⁹ Common properties for all these catalysts are a high lipophilic character, which allows transfer of anions from the aqueous phase to organic media of low polarity, and a topology imposing a large separation between the anion and the cationic center;¹⁰ thus the weak solvation and the slight interaction between the opposite ions lead to strong anion activation.

However, these similarities do not mean that the reaction mechanism demonstrated for quaternary salts also applies to all other cases. Other mechanisms cannot a priori be excluded, expecially the possibility that reactions occur at the waterorganic solvent interface.

Azamacrobicyclic polyethers (cryptands) are particularly attractive for anion activation, since they form stable cation inclusion complexes (cryptates) in which a spheroidal ligand